Tag Archives: 2015-Paper

Paper: Pre-Touch Sensing for Mobile Interaction

I have to admit it: I feel as if I’m looking at the sunrise of what may be a whole new way of interacting with mobile devices.

When I think about it, the possibilities bathe my eyes in a golden glow, and the warmth drums against my skin.

And in particular, my latest research peers out across this vivid horizon, to where I see touch — and mobile interaction with touchscreens in particular — evolving in the near future.

As a seasoned researcher, my job (which in reality is some strange admixture of interaction design, innovator, and futurist) is not necessarily to predict the future, but rather to invent it via extrapolation from a sort of visionary present which occupies my waking dreams.

I see things not as they are, but as they could be, through the lens afforded by a (usually optimistic) extrapolation from extant technologies, or those I know are likely to soon become more widely available.

With regards to interaction with touchscreens in particular, it has been clear to me for some time that the ability to sense the fingers as they approach the device — well before contact with the screen itself — is destined to become commonplace on commodity devices.

This is interesting for a number of reasons.

And no, the ability to do goofy gestures above the screen, waving at it frantically (as if it were a fancy-pants towel dispenser in a public restroom) in some dim hope of receiving an affirmative response, is not one of them.

In terms of human capabilities, one obviously cannot touch the screen of a mobile device without approaching it first.

But what often goes unrecognized is that one also must hold the device, typically in the non-preferred hand, as a precursor to touch. Hence, how you hold the device — the pattern of your grip and which hand you hold it in — are additional details of context that are more-or-less wholly ignored by current mobile devices.

So in this new work, my colleagues and I collectively refer to these two precursors of touch — approach and the need to grip the device — as pre-touch.

And it is my staunch belief that the ability to sense such pre-touch information could radically transform the mobile ‘touch’ interfaces that we all have come to take for granted.

You can get a sense of these possibilities, all implemented on a fully functional mobile phone with pre-touch sensing capability, in our demo reel below:

The project received a lot of attention, and coverage from many of the major tech blogs and other media outlets, for example:

  • The Verge (“Microsoft’s hover gestures for Windows phones are magnificent”)
  • SlashGear (“Smartphones next big thing: ‘Pre-Touch’”)
  • Business Insider (“Apple should definitely copy Microsoft’s incredible finger-sensing smartphone technology”)
  • And Fast Company Design (and again in “8 Incredible Prototypes That Show The Future Of Human-Computer Interaction.”)

But I rather liked the take that Silicon Angle offered, which took my concluding statement from the video above:

Taken as a whole, our exploration of pre-touch hints that the evolution of mobile touch may still be in its infancy – with many possibilities, unbounded by the flatland of the touchscreen, yet to explore.

 And then responded as follows:

This is the moon-landing-esque conclusion Microsoft comes to after demonstrating its rather cool pre-touch mobile technology, i.e., a mobile phone that senses what your fingers are about to do.

While this evolution of touch has been coming in the research literature for at least a decade now, what exactly to do with above- and around-screen sensing (especially in a mobile setting) has been far from obvious. And that’s where I think our work on pre-touch sensing techniques for mobile interaction distinguishes itself, and in so doing identifies some very interesting use cases that have never been realized before.

The very best of these new techniques possess a quality that I love, namely that they have a certain surprising obviousness to them:

The techniques seem obvious — but only in retrospect.

And only after you’ve been surprised by the new idea or insight that lurks behind them.

If such an effort is indeed the first hint of a moonshot for touch, well, that’s a legacy for this project that I can live with.

UPDATE: The talk I gave at the CHI 2016 conference on this project is now available. Have a gander if you are so inclined.


Thumb sensed as it hovers over pre-touch mobile phoneKen Hinckley, Seongkook Heo, Michel Pahud, Christian Holz, Hrvoje Benko, Abigail Sellen, Richard Banks, Kenton O’Hara, Gavin Smyth, William Buxton. 2016. Pre-Touch Sensing for Mobile Interaction. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA, p. 2869-2881. San Jose, CA, May 7-12, 2016. http://dx.doi.org/10.1145/2858036.2858095

[PDF] [Talk slides PPTX] [video – MP4] [30 second preview – MP4] [Watch on YouTube]

Watch Pre-Touch Sensing for Mobile Interaction video on YouTube


Paper: Sensing Tablet Grasp + Micro-mobility for Active Reading

Lately I have been thinking about touch:

In the tablet-computer sense of the word.

To most people, this means the touchscreen. The intentional pokes and swipes and pinching gestures we would use to interact with a display.

But not to me.

Touch goes far beyond that.

Look at people’s natural behavior. When they refer to a book, or pass a document to a collaborator, there are two interesting behaviors that characterize the activity.

What I call the seen but unnoticed:

Simple habits and social cues, there all the time, but which fall below our conscious attention — if they are even noticed at all.

By way of example, let’s say we’re observing someone handle a magazine.

First, the person has to grasp the magazine. Seems obvious, but easy to overlook — and perhaps vital to understand. Although grasp typically doesn’t involve contact of the fingers with the touchscreen, this is a form of ‘touch’ nonetheless, even if it is one that traditionally hasn’t been sensed by computers.

Grasp reveals a lot about the intended use, whether the person might be preparing to pick up the magazine or pass it off, or perhaps settling down for a deep and immersive engagement with the material.

Second, as an inevitable consequence of grasping the magazine, it must move. Again, at first blush this seems obvious. But these movements may be overt, or they may be quite subtle. And to a keen eye — or an astute sensing system — they are a natural consequence of grasp, and indeed are what give grasp its meaning.

In this way, sensing grasp informs the detection of movements.

And, coming full circle, the movements thus detected enrich what we can glean from grasp as well.

Yet, this interplay of grasp and movement has rarely been recognized, much less actively sensed and used to enrich and inform interaction with tablet computers.

And this feeds back into a larger point that I have often found myself trying to make lately, namely that touch is about far more than interaction with the touch-screen alone.

If we want to really understand touch (as well as its future as a technology) then we need to deeply understand these other modalities — grasp and movement, and perhaps many more — and thereby draw out the full naturalness and expressivity of interaction with tablets (and mobile phones, and e-readers, and wearables, and many dreamed-of form-factors perhaps yet to come).

My latest publication looks into all of these questions, particularly as they pertain to reading electronic documents on tablets.

We constructed a tablet (albeit a green metallic beast of one at present) that can detect natural grips along its edges and on the entire back surface of the device. And with a full complement of inertial motion sensors, as well. This image shows the grip-sensing (back) side of our technological monstrosity:

Grip Sensing Tablet Hardware

But this set-up allowed us to explore ways of combining grip and subtle motion (what has sometimes been termed micro-mobility in the literature), resulting in the following techniques (among a number of others):

A Single User ENGAGING with a Single Device

Some of these techniques address the experience of an individual engaging with their own reading material.

For example, you can hold a bookmark with your thumb (much as you can keep your finger on a page in physical book) and then tip the device. This flips back to the page that you’re holding:


This ‘Tip-to-Flip’ interaction  involves both the grip and the movement of the device and results in a fairly natural interaction that builds on a familiar habit from everyday experience with physical documents.

Another one we experimented with was a very subtle interaction that mimics holding a document and angling it up to inspect it more closely. When we sense this, the tablet zooms in slightly on the page, while removing all peripheral distractions such as menu-bars and icons:

Immersive Reading mode through grip sensing

This immerses the reader in the content, rather than the iconographic gewgaws which typically border the screen of an application as if to announce, “This is a computer!”

Multiple Users Collaborating around a Single Device

Another set of techniques we explored looked at how people pass devices to one another.

In everyday experience, passing a paper document to a collaborator is a very natural — and different — form of “sharing,” as compared to the oft-frustrating electronic equivalents we have at our disposal.

Likewise, computers should be able to sense and recognize such gestures in the real world, and use them to bring some of the socially and situationally appropriate sharing that they afford to the world of electronic documents.

We explored one such technique that automatically sets up a guest profile when you hand a tablet (displaying a specific document) to another user:


The other user can then read and mark-up that document, but he is not the beneficiary of a permanent electronic copy of it (as would be the case if you emailed him an attachment), nor is he permitted to navigate to other areas or look at other files on your tablet.

You’ve physically passed him the electronic document, and all he can do is look at it and mark it up with a pen.

Not unlike the semantics — long absent and sorely missed in computing — of a simple a piece of paper.

A Single User Working With Multiple Devices

A final area we looked at considers what happens when people work across multiple tablets.

We already live in a world where people own and use multiple devices, often side-by-side, yet our devices typically have little or no awareness of one another.

But contrast this to the messy state of people’s physical desks, with documents strewn all over. People often place documents side-by-side as a lightweight and informal way of organization, and might dexterously pick one up or hold it at the ready for quick reference when engaged in an intellectually demanding task.

Again, missing from the world of the tablet computer.

But by sensing which tablets you hold, or pick up, our system allows people to quickly refer to and cross-reference content across federations of such devices.

While the “Internet of Things” may be all the rage these days among the avant-garde of computing, such federations remain uncommon and in our view represent the future of a ‘Society of Devices’ that can recognize and interact with one another, all while respecting social mores, not the least of which are the subtle “seen but unnoticed” social cues afforded by grasping, moving, and orienting our devices.


Closing ThoughtS:

An ExpanDED Perspective OF ‘TOUCH’

The examples above represent just a few simple steps. Much more can, and should, be done to fully explore and vet these directions.

But by viewing touch as far more than simple contact of the fingers with a grubby touchscreen — and expanding our view to consider grasp, movement of the device, and perhaps other qualities of the interaction that could be sensed in the future as well — our work hints at a far wider perspective.

A perspective teeming with the possibilities that would be raised by a society of mobile appliances with rich sensing capabilities, potentially leading us to far more natural, more expressive, and more creative ways of engaging in the knowledge work of the future.



Sensing-Tablet-Grasp-Micro-Mobility-UIST-2015-thumbDongwook Yoon, Ken Hinckley, Hrvoje Benko, François Guimbretière, Pourang Irani, Michel Pahud, and Marcel Gavriliu. 2015. Sensing Tablet Grasp + Micro-mobility for Active Reading. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (UIST ’15). ACM, New York, NY, USA, 477-487. Charlotte, NC, Nov. 8-11, 2015. http://dx.doi.org/10.1145/2807442.2807510
[PDF] [Talk slides PPTX] [video – MP4] [30 second preview – MP4] [Watch on YouTube]

Watch Sensing Tablet Grasp + Micro-mobility for Active Reading video on YouTube

Editor-in-Chief, ACM Transactions on Computer-Human Interaction (TOCHI)

_TOCHI-fullsizeThe ACM Transactions on Computer-Human Interaction (TOCHI) has long been regarded as the flagship journal of the field. I’ve actually served on their editorial board since 2003, and thus have a long history with the endeavor.

So now that Shumin Zhai’s second term has come to a close, it is a great honor to report that I’ve assumed the helm as Editor-in-Chief. Shumin worked wonders in improving the efficiency and impact of the journal, diligent efforts that I am working hard to build upon. And I have many ideas and creative initiatives in the works that I hope can further advance the journal and help it to have even more impact.

The journal publishes original and significant research papers, and especially likes to see more systems-focused, long-term, or integrative contributions to human-computer interaction. TOCHI also publishes individual studies, methodologies, and techniques if we deem the contributions to be substantial enough. Occasionally impactful, well-argued, and well-supported essays on important  or emerging issues in human-computer interaction are published as well, though not often.

TOCHI prides itself on a rapid turn-around on manuscripts, with an average response time of about 50 days, and we often return manuscripts (particularly when there is not a good fit) much faster than that. We strive to make decisions within 90 days, and although that isn’t always possible, upon acceptance we do also feature very rapid publication. Digital editions of articles publish to the ACM Digital Library as soon as they are accepted, copyedited, and typeset. TOCHI can often, therefore, move articles into publication as fast as or faster than many of the popular conference venues.

Accepted papers at TOCHI also have the opportunity to present at participating SIGCHI conferences, which currently include CHI, CSCW, UIST, and MobileHCI. Authors therefore get the benefits of a rigorous reviewing process with a full journal revision cycle, plus the prestige of the TOCHI brand when you present new work to your colleagues at a top HCI conference.

To keep track of all the latest developments, you can get alerts for new TOCHI articles as they hit the Digital Library — never miss a key new result.  Or subscribe to our feed — just click on the little RSS link on the far right of the TOCHI landing page.


_TOCHI-thumbHinckley, K., Editor-in-Chief, ACM Transactions on CHI. Three-year term, commencing Sept. 1st, 2015. [TOCHI on the ACM Digital Library] 

The flagship journal of CHI.

Invited Talk: WIPTTE 2015 Presentation of Sensing Techniques for Tablets, Pen, and Touch

The organizers of WIPTTE 2015, the Workshop on the Impact of Pen and Touch Technology on Education, kindly invited me to speak about my recent work on sensing techniques for stylus + tablet interaction.

One of the key points that I emphasized:

To design technology to fully take advantage of human skills, it is critical to observe what people do with their hands when they are engaged in manual activites such as handwriting.

Notice my deliberate the use of the plural, hands, as in both of ’em, in a division of labor that is a perfect example of cooperative bimanual action.

The power of crayon and touch.

My six-year-old daughter demonstrates the power of crayon and touch technology.

And of course I had my usual array of stupid sensor tricks to illustrate the many ways that sensing systems of the future embedded in tablets and pens could take advantage of such observations. Some of these possible uses for sensors probably seem fanciful, in this antiquated era of circa 2015.

But in eerily similar fashion, some of the earliest work that I did on sensors embedded in handheld devices also felt completely out-of-step with the times when I published it back in the year 2000. A time so backwards it already belongs to the last millennium for goodness sakes!

Now aspects of that work are embedded in practically every mobile device on the planet.

It was a fun talk, with an engaged audience of educators who are eager to see pen and tablet technology advance to better serve the educational needs of students all over the world. I have three kids of school age now so this stuff matters to me. And I love speaking to this audience because they always get so excited to see the pen and touch interaction concepts I have explored over the years, as well as the new technologies emerging from the dim fog that surrounds the leading frontiers of research.

Harold and the Purple Crayon book coverI am a strong believer in the dictum that the best way to predict the future is to invent it.

And the pen may be the single greatest tool ever invented to harness the immense creative power of the human mind, and thereby to scrawl out–perhaps even in the just-in-time fashion of the famous book Harold and the Purple Crayon–the uncertain path that leads us forward.

                    * * *

Update: I have also made the original technical paper and demonstration video available now.

If you are an educator seeing impacts of pen, tablet, and touch technology in the classroom, then I strongly encourage you to start organizing and writing up your observations for next year’s workshop. The 2016 edition of the series, (now renamed CPTTE) will be held at Brown University in Providence, Rhode Island, and chaired by none other than the esteemed Andries Van Dam, who is my academic grandfather (i.e. my Ph.D. advisor’s mentor) and of course widely respected in computing circles throughout the world.

Thumbnail - WIPTTE 2015 invited TalkHinckley, K., WIPTTE 2015 Invited Talk: Sensing Techniques for Tablet + Stylus Interaction. Workshop on the Impact of Pen and Touch Technology on Education, Redmond, WA, April 28th, 2015. [Slides (.pptx)] [Slides PDF]